

 Navigation

 	
 index

 	
 next |

 	DataShape 0.4.6 documentation

Welcome to DataShape’s documentation!

Contents:

	Datashape Overview
	Units
	Primitive Types

	String Types

	Dimensions
	Records

	Datashape Traits

	Type Variables

	Option

	DataShape Grammar
	Some Simple Examples

	Syntactic Sugar

	The DataShape Grammar

	DataShape Types
	Dimension Types
	Fixed Dimension

	Var Dimension

	Strided Dimension

	Type Variables

	Ellipsis

	DTypes
	Boolean Type

	Default Integer

	Arbitrary-Precision Integer

	Signed Integer Types

	Unsigned Integer Types

	Platform-Specific Integer Aliases

	Default Floating Point

	Binary Floating Point

	Decimal Floating Point

	Default Complex

	Complex

	Void

	String

	Character

	Bytes

	Categorical

	JSON

	Records

	Tuples

	Function Prototype

	Type Variables

	Option/Missing Data

	Pointer

	Date, Time, and DateTime

	Pattern Matching DataShapes
	NumPy ldexp UFunc Example

	Ellipsis for Broadcasting
	Coercions/Broadcasting as a System of Equations

	Disallowing Coercion

	Factoring a Set of Signatures

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013-2014, Continuum Analytics.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DataShape 0.4.6 documentation

Datashape Overview

Datashape is a data layout language for array programming. It is designed
to describe in-situ structured data without requiring transformation
into a canonical form.

Similar to NumPy, datashape includes shape and dtype, but combined
together in the type system.

Units

Single named types in datashape are called unit types. They represent
either a dtype like int32 or datetime, or a single dimension
like var. Dimensions and a single dtype are composed together in
a datashape type.

Primitive Types

DataShape includes a variety of dtypes corresponding to C/C++
types, similar to NumPy.

	Bit type
	Description

	bool
	Boolean (True or False) stored as a byte

	int8
	Byte (-128 to 127)

	int16
	Two’s Complement Integer (-32768 to 32767)

	int32
	Two’s Complement Integer (-2147483648 to 2147483647)

	int64
	Two’s Complement Integer (-9223372036854775808 to 9223372036854775807)

	uint8
	Unsigned integer (0 to 255)

	uint16
	Unsigned integer (0 to 65535)

	uint32
	Unsigned integer (0 to 4294967295)

	uint64
	Unsigned integer (0 to 18446744073709551615)

	float16
	Half precision float: sign bit, 5 bits exponent,
10 bits mantissa

	float32
	Single precision float: sign bit, 8 bits exponent,
23 bits mantissa

	float64
	Double precision float: sign bit, 11 bits exponent,
52 bits mantissa

	complex[float32]
	Complex number, represented by two 32-bit floats (real
and imaginary components)

	complex[float64]
	Complex number, represented by two 64-bit floats (real
and imaginary components)

Additionally, there are types which are not fully specified at the
bit/byte level.

	Bit type
	Description

	string
	Variable length Unicode string.

	bytes
	Variable length array of bytes.

	json
	Variable length Unicode string which contains JSON.

	date
	Date in the proleptic Gregorian calendar.

	time
	Time not attached to a date.

	datetime
	Point in time, combination of date and time.

	units
	Associates physical units with numerical values.

Many python types can be mapped to datashape types:

	Python type
	Datashape

	int
	int32

	bool
	bool

	float
	float64

	complex
	complex[float64]

	str
	string

	unicode
	string

	datetime.date
	date

	datetime.time
	time

	datetime.datetime
	datetime or datetime[tz=’<timezone>’]

	datetime.timedelta
	units[‘microsecond’, int64]

	bytes
	bytes

	bytearray
	bytes

	buffer
	bytes

String Types

To Blaze, all strings are sequences of unicode code points, following
in the footsteps of Python 3. The default Blaze string atom, simply
called “string”, is a variable-length string which can contain any
unicode values. There is also a fixed-size variant compatible with
NumPy’s strings, like string[16, "ascii"].

Dimensions

An asterisk (*) between two types signifies an array. A datashape
consists of 0 or more dimensions followed by a dtype.

For example, an integer array of size three is:

3 * int

In this type, 3 is is a fixed dimension, which means it is a dimension
whose size is always as given. Other dimension types include strided
and var.

Comparing with NumPy, the array created by
np.empty((2, 3), 'int32') has datashape 2 * 3 * int32.

Records

Record types are ordered struct dtypes which hold a collection of
types keyed by labels. Records look similar to Python
dictionaries but the order the names appear is important.

Example 1:

{
 name : string,
 age : int,
 height : int,
 weight : int
}

Example 2:

{
 r: int8,
 g: int8,
 b: int8,
 a: int8
}

Records are themselves types declaration so they can be nested,
but cannot be self-referential:

Example 2:

{
 a: { x: int, y: int },
 b: { x: int, z: int }
}

Datashape Traits

While datashape is a very general type system, there are a number
of patterns a datashape might fit in.

Tabular datashapes have just one dimension, typically fixed or
var, followed by a record containing only simple types, not
nested records. This can be intuitively thought of as data which
will fit in a SQL table.:

var * { x : int, y : real, z : date }

Homogenous datashapes are arrays that have a simple dtype, the kind
of data typically used in numeric computations. For example,
a 3D velocity field might look like:

100 * 100 * 100 * 3 * real

Type Variables

Type variables are a separate class of types that express free variables
scoped within type signatures. Holding type variables as first order
terms in the signatures encodes the fact that a term can be used in many
concrete contexts with different concrete types.

For example the type capable of expressing all square two dimensional
matrices could be written as a datashape with type variable A,
constraining the two dimensions to be the same:

A * A * int32

A type capable of rectangular variable length arrays of integers
can be written as two free type vars:

A * B * int32

Note

Any name beginning with an uppercase letter is parsed as a symbolic type
(as opposed to concrete). Symbolic types can be used both as dimensions and
as data types.

Option

An option type represents data which may be there or not. This is like
data with NA values in R, or nullable columns in SQL. Given a type
like int, it can be transformed by prefixing it with a question mark
as ?int, or equivalently using the type constructor option[int]

For example a 5 * ?int array can model the Python data:

[1, 2, 3, None, None, 4]

 Copyright 2013-2014, Continuum Analytics.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DataShape 0.4.6 documentation

DataShape Grammar

The datashape language is a DSL which describes the structure of data, abstracted from
a particular implementation in a language or file format. Compared to the Python
library NumPy, it combines shape and dtype together, and introduces a
syntax for describing structured data.

Some of the basic features include:

	Dimensions are separated by asterisks.

	Lists of types are separated by commas.

	Types and Typevars are distinguished by the capitalization of the leading
character. Lowercase for types, and uppercase for typevars.

	Type constructors operate using square brackets.

	Type constructors accept positional and keyword arguments,
and their arguments may be:
	datashape, string, integer, list of datashape, list of string,
list of integer

	In multi-line datashape strings or files, comments start from #
characters to the end of the line.

Some Simple Examples

Here are some simple examples to motivate the idea:

Scalar types
bool
int32
float64

Scalar types with missing data/NA support
?bool
?float32
?complex

Arrays
3 * 4 * int32
3 * 4 * int32
10 * var * float64
3 * complex[float64]

Array of Structures
100 * {
 name: string,
 birthday: date,
 address: {
 street: string,
 city: string,
 postalcode: string,
 country: string
 }
}

Structure of Arrays
{
 x: 100 * 100 * float32,
 y: 100 * 100 * float32,
 u: 100 * 100 * float32,
 v: 100 * 100 * float32,
}

Structure with strings for field names
{
 'field 0': 100 * float32,
 'field 1': float32,
 'field 2': float32,
}

Array of Tuples
20 * (int32, float64)

Function prototype
(3 * int32, float64) -> 3 * float64

Function prototype with broadcasting dimensions
(A... * int32, A... * int32) -> A... * int32

Syntactic Sugar

Many syntax elements in datashape are syntax sugar for particular
type constructors. For dtypes, this is:

{x : int32, y : int16} => struct[['x', 'y'], [int32, int16]]
(int64, float32) => tuple[[int64, float32]]
(int64, float32) -> bool => funcproto[[int64, float32], bool]
DTypeVar => typevar['DTypeVar']
?int32 => option[int32]
2 * ?3 * int32 => 2 * option[3 * int32]

For dims, this is:

3 * int32 => fixed[3] * int32
DimVar * int32 => typevar['DimVar'] * int32
... * int32 => ellipsis * int32
DimVar... * int32 => ellipsis['DimVar'] * int32

The DataShape Grammar

Dimension Type Symbol Table:

Variable-sized dimension
var

Dimension Type Constructor Symbol Table:

Arrays which are either missing or fully there
option[3 * int32]
option

Data Type Symbol Table:

Numeric
bool
Two's complement binary integers
int8
int16
int32
int64
int128
Unsigned binary integers
uint8
uint16
uint32
uint64
uint128
IEEE 754-2008 binary### floating point binary numbers
float16
float32
float64
float128
IEEE 754-2008 decimal### floating point decimal numbers
decimal32
decimal64
decimal128
Arbitrary precision integer
bignum
Alias for int32
int
Alias for float64
real
Alias for complex[float64]
complex
Alias for int32 or int64 depending on platform
intptr
Alias for uint32 or uint64 depending on platform
uintptr

A unicode string
string
A single unicode code point
char
A blob of bytes
bytes
A date
date
A string containing JSON
json
No data
void

Data Type Constructor Symbol Table:

complex[float32], complex[type=float64]
complex
string['ascii'], string[enc='cp949']
string
bytes[size=4,align=2]
bytes
datetime[unit='minutes',tz='CST']
datetime
categorical[type=string, values=['low', 'medium', 'high']]
categorical
option[float64]
option
pointer[target=2 * 3 * int32]
pointer

Tokens:

NAME_LOWER : [a-z][a-zA-Z0-9_]*
NAME_UPPER : [A-Z][a-zA-Z0-9_]*
NAME_OTHER : _[a-zA-Z0-9_]*
ASTERISK : *
COMMA : ,
EQUAL : =
COLON : :
LBRACKET : \[
RBRACKET : \]
LBRACE : \{
RBRACE : \}
LPAREN : \(
RPAREN : \)
ELLIPSIS : \.\.\.
RARROW : ->
QUESTIONMARK : ?
INTEGER : 0(?![0-9])|[1-9][0-9]*
STRING : (?:"(?:[^"\n\r\\]|(?:\\u[0-9a-fA-F]{4})|(?:\\["bfnrt]))*")|(?:\'(?:[^\'\n\r\\]|(?:\\u[0-9a-fA-F]{4})|(?:\\['bfnrt]))*"))*\')

Grammar:

Datashape may start with a '?' or not to signal optionality
datashape : datashape_nooption
 | QUESTIONMARK datashape_nooption

Asterisk-separated list of dimensions, followed by data type
datashape_nooption : dim ASTERISK datashape
 | dtype

Dimension Type (from the dimension type symbol table)
dim : typevar
 | ellipsis_typevar
 | type
 | type_constr
 | INTEGER
 | ELLIPSIS

Data Type (from the data type symbol table)
dtype : typevar
 | type
 | type_constr
 | struct_type
 | funcproto_or_tuple_type

A type variable
typevar : NAME_UPPER

A type variable with ellipsis
ellipsis_typevar : NAME_UPPER ELLIPSIS

A bare type (from the data type symbol table)
type : NAME_LOWER

Type Constructor (from the data type constructor symbol table)
type_constr : NAME_LOWER LBRACKET type_arg_list RBRACKET

Type Constructor: list of arguments
type_arg_list : type_arg COMMA type_arg_list
 | type_kwarg_list
 | type_arg

Type Constructor: list of arguments
type_kwarg_list : type_kwarg COMMA type_kwarg_list
 | type_kwarg

Type Constructor : single argument
type_arg : datashape
 | INTEGER
 | STRING
 | list_type_arg

Type Constructor : single keyword argument
type_kwarg : NAME_LOWER EQUAL type_arg

Type Constructor : single list argument
list_type_arg : LBRACKET RBRACKET
 | LBRACKET datashape_list RBRACKET
 | LBRACKET integer_list RBRACKET
 | LBRACKET string_list RBRACKET

datashape_list : datashape COMMA datashape_list
 | datashape

integer_list : INTEGER COMMA integer_list
 | INTEGER

string_list : STRING COMMA string_list
 | STRING

Struct/Record type (allowing for a trailing comma)
struct_type : LBRACE struct_field_list RBRACE
 | LBRACE struct_field_list COMMA RBRACE

struct_field_list : struct_field COMMA struct_field_list
 | struct_field

struct_field : struct_field_name COLON datashape

struct_field_name : NAME_LOWER
 | NAME_UPPER
 | NAME_OTHER
 | STRING

Function prototype is a tuple with an arrow to the output type
funcproto_or_tuple_type : tuple_type RARROW datashape
 | tuple_type

Tuple type (allowing for a trailing comma)
tuple_type : LPAREN tuple_item_list RPAREN
 | LPAREN tuple_item_list COMMA RPAREN

tuple_item_list : datashape COMMA tuple_item_list
 | datashape

 Copyright 2013-2014, Continuum Analytics.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DataShape 0.4.6 documentation

DataShape Types

In addition to defining the grammar, datashape specifies
a standard set of types and some properties those types should have.
Type constructors can be classified as dimension or dtype, and a
datashape is always composed of zero or more dimensions followed by
a dtype.

Dimension Types

Fixed Dimension

fixed[4]

A dimension whose size is specified. This is the most common
dimension type used in Blaze, and 4 * int32 is syntactic sugar for
fixed[4] * int32 in datashape syntax.

Var Dimension

var

A dimension whose size may be different across instances.
A common use of this is a ragged array like 4 * var * int32.

Strided Dimension

strided

A dimension whose size is fixed across the array, but whose
size is no known ahead of time. This is not commonly used in Blaze,
but is in DyND where it is how NumPy-like dimensions are created.
For example, a two dimensional strided array has type
strided * strided * int32, and does not bake in particular
dimension sizes like with fixed dimensions in 10 * 15 * int32.

Type Variables

typevar['DimName']

Constructs a type variable. DimName is syntactic sugar for
typevar['DimName']. This is used for pattern matching types,
particularly for function prototypes. For example the
datashape (M * N * int32) -> N * int32 accepts an input
with two dimensions that are type variables, and returns a
one dimensional array using one of those dimension types.

Ellipsis

ellipsis

Constructs an ellipsis for matching multiple broadcast dimensions.
... is syntactic sugar for ellipsis.

ellipsis['DimVar']

Constructs a named ellipsis for matching multiple broadcast dimensions.
Dim... is syntactic sugar for ellipsis['Dim'].

DTypes

Boolean Type

bool

A boolean type which may take on two values, True and False.
In Blaze and DyND, this is stored as a single byte which may take on
the values 1 and 0.

Default Integer

int

This is an alias for int32.

Arbitrary-Precision Integer

bignum or bigint

An integer type which has no minimum or maximum value. This is not
implemented in Blaze or DyND presently and the final name for it hasn’t
been locked down.

Signed Integer Types

int8
int16
int32
int64
int128

Integer types whose behavior follows that of twos-complement integers
of the given size.

Unsigned Integer Types

uint8
uint16
uint32
uint64
uint128

Integer types whose behavior follows that of unsigned integers of
the given size.

Platform-Specific Integer Aliases

intptr
uintptr

Aliases for int## and uint## where ## is the size of a pointer type on
the platform.

Default Floating Point

real

This is an alias for float64.

Binary Floating Point

float16
float32
float64
float128

Binary floating point types as defined by IEEE 754-2008. Each type
corresponds to the binary## type defined in the standard.

Note that float128 is not a C/C++ long double, except on such
platforms where they coincide. NumPy defines a float128 on
some platforms which is not IEEE binary128, and is thus different
from DataShape’s type of the same name on those platforms.

	TODO: Support for C/C++ long double. This is tricky given that

	DataShape intends to be cross-platform, and maybe some inspiration
can be taken from HDF5 for specifying them.

Decimal Floating Point

decimal32
decimal64
decimal128

Decimal floating point types as defined by IEEE 754-2008. These are
not implemented in Blaze or DyND presently.

Default Complex

complex

This is an alias for complex[float64].

Complex

complex[float32]

Constructs a complex number type from a real number type.

Void

void

A type which can store no data. It is not intended to be constructed
in concrete arrays, but to allow for things like function prototypes
with void return type.

String

string

A unicode string that can be arbitrarily sized. In Blaze and DyND, this
is a UTF-8 encoded string.

string[16]

A unicode string in a UTF-8 fixed-sized buffer. The string is
zero-terminated, but as in NumPy, all bytes may be filled with character
data so the buffer is not valid as a C-style string.

string['utf16']

A unicode string that can be arbitrarily sized, using the specified
encoding. Valid values for the encoding are 'ascii', 'utf8',
'utf16', 'utf32', 'ucs2', and 'cp###' for valid
code pages.

string[16, 'utf16']

A unicode string in a fixed-size buffer of the specified number of bytes,
encoded as the requested encoding. The string is
zero-terminated, but as in NumPy, all bytes may be filled with character
data so the buffer is not valid as a C-style string.

Character

char

A value which contains a single unicode code point. Typically stored as
a 32-bit integer.

Bytes

bytes

An arbitrarily sized blob of bytes. This like bytes in Python 3.

bytes[16]

A fixed-size blob of bytes. This is not zero-terminated as in the
string case, it is always exactly the specified number of bytes.

Categorical

categorical[type=string, values=['low', 'medium', 'high']]

Constructs a type which stores values compactly as small integers
that are indexes into the list of values provided.

JSON

json

A unicode string which is known to contain values represented as JSON.

Records

struct[['name', 'age', 'height'], [string, int, real]]

Constructs a record type with the given field names and types.
{name: string, age: int} is syntactic sugar for
struct[['name', 'age'], [string, int]].

Tuples

tuple[[string, int, real]]

Constructs a tuple type with the given types. (string, int)
is syntactic sugar for tuple[[string, int]].

Function Prototype

funcproto[[string, int], bool]

Constructs a function prototype with the given argument and return types.
(string, int) -> bool is syntactic sugar for
funcproto[[string, int], bool].

Type Variables

typevar['DTypeName']

Constructs a type variable. DTypeName is syntactic sugar for
typevar['DTypeName']. This is used for pattern matching types,
particularly for function prototypes. For example the
datashape (T, T) -> T accepts any types as input, but requires
they have the same types.

Option/Missing Data

option[float32]

Constructs a type based on the provided type which may have missing
values. ?float32 is syntactic sugar for option[float32].

The type inside the option parameter may also have its own dimensions,
for example ?3 * float32 is syntactic sugar for option[3 * float32].

Pointer

pointer[target=2 * 3 * int32]

Constructs a type whose value is a pointer to values of the target type.

Date, Time, and DateTime

date

A type which represents a single date in the Gregorian calendar.
In DyND and Blaze, it is represented as a 32-bit signed integer offset
from the date 1970-01-01.

time
time[tz='UTC']

Represents a time in an abstract day (no time zone), or a day
with the specified time zone.

Stored as a 64-bit integer offset from midnight,
stored as ticks (100 ns units).

datetime
datetime[tz='UTC']

Represents a moment in time in an abstract time zone if no time
zone is provided, otherwise stored as UTC but representing time
in the specified time zone.

Stored as a 64-bit signed integer offset from
0001-01-01T00:00:00 in ticks (100 ns units), the “universal
time scale” from the ICU library. Follows the POSIX convention
of ignoring leap seconds.

http://userguide.icu-project.org/datetime/universaltimescale

units['second', int64]

A type which represents a value with the units and type specified.
Initially only supporting time units, to support the datetime
functionality without adding a special “timedelta” type.

Initial valid units are: ‘100*nanosecond’ (ticks as in the datetime storage),
‘microsecond’, ‘millisecond’, ‘second’, ‘minute’, ‘hour’, ‘day’.
Need to decide on valid shortcuts in a context with more physical units,
probably by adopting conventions from a good physical units library.

timetz
datetimetz

Represents a time/datetime with the time zone attached to the data. Not
implemented in Blaze/DyND.

 Copyright 2013-2014, Continuum Analytics.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	DataShape 0.4.6 documentation

Pattern Matching DataShapes

DataShape includes type variables, as symbols beginning with a
capital letter. For example A * int32 represents a one-dimensional
array of int32, where the size or type of the dimension is
unspecified. Similarly, 3 * A represents a size 3 one-dimensional
array where the data type is unspecified.

The main usage of pattern matching in the DataShape system is for
specifying function signatures. To provide a little bit of motivation,
let’s examine what happens in NumPy ufuncs, and see how we can
represent their behaviors via DataShape types.

NumPy ldexp UFunc Example

We’re going to use the ldexp ufunc, which is for the C/C++
function with overloads double ldexp(double x, int exp)
and float ldexp(float x, int exp), computing x * 2^exp
by tweaking the exponent in the floating point format. (We’re
ignoring the long double for now.)

These C++ functions can be represented with the DataShape
function signatures:

(float32, int32) -> float32
(float64, int32) -> float64

As a NumPy ufunc, there is an behavior for arrays, where the
source arrays are “broadcasted” together, and the function is
computed elementwise.

In the simplest case, given two arrays which match, the result
is an array of the same size. When one array has size one in a
dimension, it gets repeated to match the size of the other dimension.
When one array has fewer dimensions, it gets repeated to fill
in the outer dimensions. The “broadcast” array shape is the result
of combining all these repetitions, and is the shape of the output.
Represented as DataShape function signatures, some examples are:

(12 * float32, 12 * int32) -> 12 * float32
(10 * float64, 1 * int32) -> 10 * float64
(float32, 3 * 4 * int32) -> 3 * 4 * float32
(3 * float64, 4 * 1 * int64) -> 4 * 3 * float64

Ellipsis for Broadcasting

To represent the general broadcasting behavior, DataShape provides
ellipsis type variables.:

(A... * float32, A... * int32) -> A... * float32
(A... * float64, A... * int64) -> A... * float64

Coercions/Broadcasting as a System of Equations

Let’s say as input we get two arrays with datashapes
3 * 4 * float64 and int32. We can express this as
two systems of coercion equations as follows (using ==>
as a “coerces to” operator):

float32 prototype
3 * 4 * float64 ==> A... * float32
int32 ==> A... * int32

float64 prototype
3 * 4 * float64 ==> A... * float64
int32 ==> A... * int32

To solve these equations, we evaluate the legality
of each coercion, and accumulate the set of values
the A... type variable must take.:

float32 prototype
float64 ==> float32 # ILLEGAL
3 * 4 * ==> A... * # "3 * 4 *" in A...
int32 ==> int32 # LEGAL
* ==> A... # "*" in A...

float64 prototype
float64 ==> float64 # LEGAL
3 * 4 * ==> A... * # "3 * 4 *" in A...
int32 ==> int32 # LEGAL
* ==> A... # "*" in A...

The float32 prototype can be discarded because it requires an
illegal coercion. In the float64 prototype, we collect the set
of all A... values {“3 * 4 *”, “*”}, broadcast them together
to get “3 * 4 *”, and substitute this in the output. Doing
all the substitutions in the full prototype produces:

(3 * 4 * float64, int32) -> 3 * 4 * float64

as the matched function prototype that results.

Disallowing Coercion

In the particular function we picked, ideally we don’t want to
allow implicit coercion of the type, because the nature of the
function is to “load the exponent” in particular formats of
floating point number. Saying ldexp(True, 3), and having it
work is kind of weird.

One way to tackle this would be to add an exact type, both
as a dimension and a data type, which indicates that broadcasting
should be disallowed. For the discussion, in addition to ldexp,
lets introduce a vector magnitude function mag, where we want
to disallow scalar arrays to broadcast into it.:

ldexp signatures
(A... * exact[float32], A... * int32) -> A... * float32
(A... * exact[float64], A... * int64) -> A... * float64

mag signatures
(A... * exact[2] * float32) -> A... * float32
(A... * exact[3] * float32) -> A... * float32

ufunc but disallowing broadcasting
(exact[A...] * int32, exact[A...] * int32) -> A... * int32

A possible syntactic sugar (which I’m not attached to, I think
this needs some exploration) for this is:

ldexp signatures
(A... * float32=, A... * int32) -> A... * float32
(A... * float64=, A... * int64) -> A... * float64

mag signatures
(A... * 2= * float32) -> A... * float32
(A... * 3= * float32) -> A... * float32

ufunc but disallowing broadcasting
(A=.. * int32, A=.. * int32) -> A... * int32

Factoring a Set of Signatures

One of the main things the multiple dispatch in DataShape has
to do is match input arrays against a set of signatures very
efficiently. We need to be able to hide the abstraction we’re
creating, and provide performance competitive with, but ideally
superior to, what NumPy provides in its ufunc system.

Factoring the set of signatures into two or more stages which
are simpler to solve and can prune the possibilities more quickly
is one way to do this abstraction hiding. Let’s use the add function
for our example, with the following subset of signatures. We’ve
included the datetime signatures to dispel any notion that the
signatures will always match precisely.:

add signatures
(A... * int32, A... * int32) -> A... * int32
(A... * int64, A... * int64) -> A... * int64
(A... * float32, A... * float32) -> A... * float32
(A... * float64, A... * float64) -> A... * float64
(A... * timedelta, A... * timedelta) -> A... * timedelta
(A... * datetime, A... * timedelta) -> A... * datetime
(A... * timedelta, A... * datetime) -> A... * datetime

Because the broadcasting of all these cases is identical, we
can transform this set of signatures into two stages as follows:

broadcasting stage
(A... * X, A... * Y) -> A... * Z

data type stage matched against (X, Y)
(int32, int32) -> int32
(int64, int64) -> int64
(float32, float32) -> float32
(float64, float64) -> float64
(timedelta, timedelta) -> timedelta
(datetime, timedelta) -> datetime
(timedelta, datetime) -> datetime

Let’s work through this example to illustrate how it works.:

Stage 1: Input arrays "3 * 1 * int32", "4 * float32"
(A... * X, A... * Y) -> A... * Z
int32 ==> X # "int32" in X
3 * 1 * ==> A... # "3 * 1 *" in A...
float32 ==> Y # "float32" in Y
4 * ==> A... # "4 *" in A...

Solution: A... is "3 * 4 *", X is "int32", and Y is "float32"
Stage 2: Input arrays "int32" and "float32"
(int32, int32) -> int32
int32 ==> int32 # LEGAL
float32 ==> int32 # ILLEGAL
(float32, float32) -> float32
int32 ==> float32 # LEGAL
float32 ==> float32 # LEGAL
etc.

Assume we picked (float32, float32) -> float32
so the variables are:
X is "float32"
Y is "float32"
Z is "float32"
giving the solution substituted into stage 1:
(3 * 1 * float32, 4 * float32) -> 3 * 4 * float32

 Copyright 2013-2014, Continuum Analytics.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	DataShape 0.4.6 documentation

Index

 Copyright 2013-2014, Continuum Analytics.
 Created using Sphinx 1.3.1.

 _static/down.png

search.html

 Navigation

 		
 index

 		DataShape 0.4.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, Continuum Analytics.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/minus.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/up-pressed.png

_static/down-pressed.png

