
datashape Documentation
Release 0.5.4+8.gcae16a8

Continuum Analytics

Jul 25, 2018

Contents

1 Datashape Overview 3
1.1 Units . 3
1.2 Dimensions . 4

2 DataShape Types 7
2.1 Dimension Types . 7
2.2 DTypes . 8

3 Pattern Matching DataShapes 13
3.1 NumPy ldexp UFunc Example . 13
3.2 Ellipsis for Broadcasting . 14
3.3 Disallowing Coercion . 14
3.4 Factoring a Set of Signatures . 15

4 DataShape Grammar 17
4.1 Some Simple Examples . 17
4.2 Syntactic Sugar . 18
4.3 The DataShape Grammar . 19

5 Release Notes 23
5.1 Release 0.5.4+8.gcae16a8 . 23
5.2 New Features . 23
5.3 New Types . 23
5.4 Experimental Types . 23
5.5 API Changes . 24
5.6 Bug Fixes . 24
5.7 Miscellaneous . 24

6 Indices and tables 25

i

ii

datashape Documentation, Release 0.5.4+8.gcae16a8

Contents:

Contents 1

datashape Documentation, Release 0.5.4+8.gcae16a8

2 Contents

CHAPTER 1

Datashape Overview

Datashape is a data layout language for array programming. It is designed to describe in-situ structured data without
requiring transformation into a canonical form.

Similar to NumPy, datashape includes shape and dtype, but combined together in the type system.

1.1 Units

Single named types in datashape are called unit types. They represent either a dtype like int32 or datetime, or
a single dimension like var. Dimensions and a single dtype are composed together in a datashape type.

1.1.1 Primitive Types

DataShape includes a variety of dtypes corresponding to C/C++ types, similar to NumPy.

Bit type Description
bool Boolean (True or False) stored as a byte
int8 Byte (-128 to 127)
int16 Two’s Complement Integer (-32768 to 32767)
int32 Two’s Complement Integer (-2147483648 to 2147483647)
int64 Two’s Complement Integer (-9223372036854775808 to 9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex[float32] Complex number, represented by two 32-bit floats (real and imaginary components)
complex[float64] Complex number, represented by two 64-bit floats (real and imaginary components)

3

datashape Documentation, Release 0.5.4+8.gcae16a8

Additionally, there are types which are not fully specified at the bit/byte level.

Bit type Description
string Variable length Unicode string.
bytes Variable length array of bytes.
json Variable length Unicode string which contains JSON.
date Date in the proleptic Gregorian calendar.
time Time not attached to a date.
datetime Point in time, combination of date and time.
units Associates physical units with numerical values.

Many python types can be mapped to datashape types:

Python type Datashape
int int32
bool bool
float float64
complex complex[float64]
str string
unicode string
datetime.date date
datetime.time time
datetime.datetime datetime or datetime[tz=’<timezone>’]
datetime.timedelta units[‘microsecond’, int64]
bytes bytes
bytearray bytes
buffer bytes

1.1.2 String Types

To Blaze, all strings are sequences of unicode code points, following in the footsteps of Python 3. The default Blaze
string atom, simply called “string”, is a variable-length string which can contain any unicode values. There is also a
fixed-size variant compatible with NumPy’s strings, like string[16, "ascii"].

1.2 Dimensions

An asterisk (*) between two types signifies an array. A datashape consists of 0 or more dimensions followed by a
dtype.

For example, an integer array of size three is:

3 * int

In this type, 3 is is a fixed dimension, which means it is a dimension whose size is always as given. Other dimension
types include var.

Comparing with NumPy, the array created by np.empty((2, 3), 'int32') has datashape 2 * 3 * int32.

4 Chapter 1. Datashape Overview

datashape Documentation, Release 0.5.4+8.gcae16a8

1.2.1 Records

Record types are ordered struct dtypes which hold a collection of types keyed by labels. Records look similar to
Python dictionaries but the order the names appear is important.

Example 1:

{
name : string,
age : int,
height : int,
weight : int

}

Example 2:

{
r: int8,
g: int8,
b: int8,
a: int8

}

Records are themselves types declaration so they can be nested, but cannot be self-referential:

Example 2:

{
a: { x: int, y: int },
b: { x: int, z: int }

}

1.2.2 Datashape Traits

While datashape is a very general type system, there are a number of patterns a datashape might fit in.

Tabular datashapes have just one dimension, typically fixed or var, followed by a record containing only simple
types, not nested records. This can be intuitively thought of as data which will fit in a SQL table.:

var * { x : int, y : real, z : date }

Homogenous datashapes are arrays that have a simple dtype, the kind of data typically used in numeric computations.
For example, a 3D velocity field might look like:

100 * 100 * 100 * 3 * real

1.2.3 Type Variables

Type variables are a separate class of types that express free variables scoped within type signatures. Holding type
variables as first order terms in the signatures encodes the fact that a term can be used in many concrete contexts with
different concrete types.

For example the type capable of expressing all square two dimensional matrices could be written as a datashape with
type variable A, constraining the two dimensions to be the same:

1.2. Dimensions 5

datashape Documentation, Release 0.5.4+8.gcae16a8

A * A * int32

A type capable of rectangular variable length arrays of integers can be written as two free type vars:

A * B * int32

Note: Any name beginning with an uppercase letter is parsed as a symbolic type (as opposed to concrete). Symbolic
types can be used both as dimensions and as data types.

1.2.4 Option

An option type represents data which may be there or not. This is like data with NA values in R, or nullable columns
in SQL. Given a type like int, it can be transformed by prefixing it with a question mark as ?int, or equivalently
using the type constructor option[int]

For example a 5 * ?int array can model the Python data:

[1, 2, 3, None, None, 4]

6 Chapter 1. Datashape Overview

CHAPTER 2

DataShape Types

In addition to defining the grammar, datashape specifies a standard set of types and some properties those types should
have. Type constructors can be classified as dimension or dtype, and a datashape is always composed of zero or
more dimensions followed by a dtype.

2.1 Dimension Types

2.1.1 Fixed Dimension

fixed[4]

A dimension whose size is specified. This is the most common dimension type used in Blaze, and 4 * int32 is
syntactic sugar for fixed[4] * int32 in datashape syntax.

2.1.2 Var Dimension

var

A dimension whose size may be different across instances. A common use of this is a ragged array like 4 * var *
int32.

2.1.3 Type Variables

typevar['DimName']

Constructs a type variable. DimName is syntactic sugar for typevar['DimName']. This is used for pattern
matching types, particularly for function prototypes. For example the datashape (M * N * int32) -> N *
int32 accepts an input with two dimensions that are type variables, and returns a one dimensional array using one of
those dimension types.

7

datashape Documentation, Release 0.5.4+8.gcae16a8

2.1.4 Ellipsis

ellipsis

Constructs an ellipsis for matching multiple broadcast dimensions. ... is syntactic sugar for ellipsis.

ellipsis['DimVar']

Constructs a named ellipsis for matching multiple broadcast dimensions. Dim... is syntactic sugar for
ellipsis['Dim'].

2.2 DTypes

2.2.1 Boolean Type

bool

A boolean type which may take on two values, True and False. In Blaze and DyND, this is stored as a single byte
which may take on the values 1 and 0.

2.2.2 Default Integer

int

This is an alias for int32.

2.2.3 Arbitrary-Precision Integer

bignum or bigint

An integer type which has no minimum or maximum value. This is not implemented in Blaze or DyND presently and
the final name for it hasn’t been locked down.

2.2.4 Signed Integer Types

int8 int16 int32 int64 int128

Integer types whose behavior follows that of twos-complement integers of the given size.

2.2.5 Unsigned Integer Types

uint8 uint16 uint32 uint64 uint128

Integer types whose behavior follows that of unsigned integers of the given size.

2.2.6 Platform-Specific Integer Aliases

intptr uintptr

Aliases for int## and uint## where ## is the size of a pointer type on the platform.

8 Chapter 2. DataShape Types

datashape Documentation, Release 0.5.4+8.gcae16a8

2.2.7 Default Floating Point

real

This is an alias for float64.

2.2.8 Binary Floating Point

float16 float32 float64 float128

Binary floating point types as defined by IEEE 754-2008. Each type corresponds to the binary## type defined in
the standard.

Note that float128 is not a C/C++ long double, except on such platforms where they coincide. NumPy defines
a float128 on some platforms which is not IEEE binary128, and is thus different from DataShape’s type of the
same name on those platforms.

TODO: Support for C/C++ long double. This is tricky given that DataShape intends to be cross-platform,
and maybe some inspiration can be taken from HDF5 for specifying them.

2.2.9 Decimal Floating Point

decimal32 decimal64 decimal128

Decimal floating point types as defined by IEEE 754-2008. These are not implemented in Blaze or DyND presently.

2.2.10 Default Complex

complex

This is an alias for complex[float64].

2.2.11 Complex

complex[float32]

Constructs a complex number type from a real number type.

2.2.12 Void

void

A type which can store no data. It is not intended to be constructed in concrete arrays, but to allow for things like
function prototypes with void return type.

2.2.13 String

string

A unicode string that can be arbitrarily sized. In Blaze and DyND, this is a UTF-8 encoded string.

string[16]

2.2. DTypes 9

datashape Documentation, Release 0.5.4+8.gcae16a8

A unicode string in a UTF-8 fixed-sized buffer. The string is zero-terminated, but as in NumPy, all bytes may be filled
with character data so the buffer is not valid as a C-style string.

string['utf16']

A unicode string that can be arbitrarily sized, using the specified encoding. Valid values for the encoding are
'ascii', 'utf8', 'utf16', 'utf32', 'ucs2', and 'cp###' for valid code pages.

string[16, 'utf16']

A unicode string in a fixed-size buffer of the specified number of bytes, encoded as the requested encoding. The string
is zero-terminated, but as in NumPy, all bytes may be filled with character data so the buffer is not valid as a C-style
string.

2.2.14 Character

char

A value which contains a single unicode code point. Typically stored as a 32-bit integer.

2.2.15 Bytes

bytes

An arbitrarily sized blob of bytes. This like bytes in Python 3.

bytes[16]

A fixed-size blob of bytes. This is not zero-terminated as in the string case, it is always exactly the specified number
of bytes.

2.2.16 Categorical

categorical[['low', 'medium', 'high'], type=string, ordered=True]

Constructs a type whose values are constrained to a particular set. The type parameter is optional and is inferred
by the first argument. The ordered parameter is a boolean indicating whether the values in the set are ordered, so
certain functions like min and max work.

Note: The categorical type assumes that the input categories are unique.

2.2.17 JSON

json

A unicode string which is known to contain values represented as JSON.

2.2.18 Records

struct[['name', 'age', 'height'], [string, int, real]]

Constructs a record type with the given field names and types. {name: string, age: int} is syntactic
sugar for struct[['name', 'age'], [string, int]].

10 Chapter 2. DataShape Types

datashape Documentation, Release 0.5.4+8.gcae16a8

2.2.19 Tuples

tuple[[string, int, real]]

Constructs a tuple type with the given types. (string, int) is syntactic sugar for tuple[[string, int]].

2.2.20 Function Prototype

funcproto[[string, int], bool]

Constructs a function prototype with the given argument and return types. (string, int) -> bool is syntactic
sugar for funcproto[[string, int], bool].

2.2.21 Type Variables

typevar['DTypeName']

Constructs a type variable. DTypeName is syntactic sugar for typevar['DTypeName']. This is used for pattern
matching types, particularly for function prototypes. For example the datashape (T, T) -> T accepts any types as
input, but requires they have the same types.

2.2.22 Option/Missing Data

option[float32]

Constructs a type based on the provided type which may have missing values. ?float32 is syntactic sugar for
option[float32].

The type inside the option parameter may also have its own dimensions, for example ?3 * float32 is syntactic
sugar for option[3 * float32].

2.2.23 Pointer

pointer[target=2 * 3 * int32]

Constructs a type whose value is a pointer to values of the target type.

2.2.24 Maps

Represents the type of key-value pairs. This is used for discovering foreign key relationships in relational databases,
but is meant to be useful outside of that context as well. For example the type of a column of Python dictionaries
whose keys are strings and values are 64-bit integers would be written as:

var * map[string, int64]

2.2.25 Date, Time, and DateTime

date

A type which represents a single date in the Gregorian calendar. In DyND and Blaze, it is represented as a 32-bit
signed integer offset from the date 1970-01-01.

2.2. DTypes 11

datashape Documentation, Release 0.5.4+8.gcae16a8

time time[tz='UTC']

Represents a time in an abstract day (no time zone), or a day with the specified time zone.

Stored as a 64-bit integer offset from midnight, stored as ticks (100 ns units).

datetime datetime[tz='UTC']

Represents a moment in time in an abstract time zone if no time zone is provided, otherwise stored as UTC but
representing time in the specified time zone.

Stored as a 64-bit signed integer offset from 0001-01-01T00:00:00 in ticks (100 ns units), the “universal time
scale” from the ICU library. Follows the POSIX convention of ignoring leap seconds.

http://userguide.icu-project.org/datetime/universaltimescale

units['second', int64]

A type which represents a value with the units and type specified. Initially only supporting time units, to support the
datetime functionality without adding a special “timedelta” type.

Initial valid units are: ‘100*nanosecond’ (ticks as in the datetime storage), ‘microsecond’, ‘millisecond’, ‘second’,
‘minute’, ‘hour’, ‘day’. Need to decide on valid shortcuts in a context with more physical units, probably by adopting
conventions from a good physical units library.

timetz datetimetz

Represents a time/datetime with the time zone attached to the data. Not implemented in Blaze/DyND.

12 Chapter 2. DataShape Types

http://userguide.icu-project.org/datetime/universaltimescale

CHAPTER 3

Pattern Matching DataShapes

DataShape includes type variables, as symbols beginning with a capital letter. For example A * int32 represents a
one-dimensional array of int32, where the size or type of the dimension is unspecified. Similarly, 3 * A represents a
size 3 one-dimensional array where the data type is unspecified.

The main usage of pattern matching in the DataShape system is for specifying function signatures. To provide a little
bit of motivation, let’s examine what happens in NumPy ufuncs, and see how we can represent their behaviors via
DataShape types.

3.1 NumPy ldexp UFunc Example

We’re going to use the ldexp ufunc, which is for the C/C++ function with overloads double ldexp(double x, int exp)
and float ldexp(float x, int exp), computing x * 2^exp by tweaking the exponent in the floating point format. (We’re
ignoring the long double for now.)

These C++ functions can be represented with the DataShape function signatures:

(float32, int32) -> float32
(float64, int32) -> float64

As a NumPy ufunc, there is an behavior for arrays, where the source arrays are “broadcasted” together, and the function
is computed elementwise.

In the simplest case, given two arrays which match, the result is an array of the same size. When one array has size one
in a dimension, it gets repeated to match the size of the other dimension. When one array has fewer dimensions, it gets
repeated to fill in the outer dimensions. The “broadcast” array shape is the result of combining all these repetitions,
and is the shape of the output. Represented as DataShape function signatures, some examples are:

(12 * float32, 12 * int32) -> 12 * float32
(10 * float64, 1 * int32) -> 10 * float64
(float32, 3 * 4 * int32) -> 3 * 4 * float32
(3 * float64, 4 * 1 * int64) -> 4 * 3 * float64

13

datashape Documentation, Release 0.5.4+8.gcae16a8

3.2 Ellipsis for Broadcasting

To represent the general broadcasting behavior, DataShape provides ellipsis type variables.:

(A... * float32, A... * int32) -> A... * float32
(A... * float64, A... * int64) -> A... * float64

3.2.1 Coercions/Broadcasting as a System of Equations

Let’s say as input we get two arrays with datashapes 3 * 4 * float64 and int32. We can express this as two systems of
coercion equations as follows (using ==> as a “coerces to” operator):

float32 prototype
3 * 4 * float64 ==> A... * float32
int32 ==> A... * int32

float64 prototype
3 * 4 * float64 ==> A... * float64
int32 ==> A... * int32

To solve these equations, we evaluate the legality of each coercion, and accumulate the set of values the A. . . type
variable must take.:

float32 prototype
float64 ==> float32 # ILLEGAL
3 * 4 * ==> A... * # "3 * 4 *" in A...
int32 ==> int32 # LEGAL

* ==> A... # "*" in A...

float64 prototype
float64 ==> float64 # LEGAL
3 * 4 * ==> A... * # "3 * 4 *" in A...
int32 ==> int32 # LEGAL

* ==> A... # "*" in A...

The float32 prototype can be discarded because it requires an illegal coercion. In the float64 prototype, we collect the
set of all A. . . values {“3 * 4 *”, “*”}, broadcast them together to get “3 * 4 *”, and substitute this in the output.
Doing all the substitutions in the full prototype produces:

(3 * 4 * float64, int32) -> 3 * 4 * float64

as the matched function prototype that results.

3.3 Disallowing Coercion

In the particular function we picked, ideally we don’t want to allow implicit coercion of the type, because the nature
of the function is to “load the exponent” in particular formats of floating point number. Saying ldexp(True, 3), and
having it work is kind of weird.

One way to tackle this would be to add an exact type, both as a dimension and a data type, which indicates that
broadcasting should be disallowed. For the discussion, in addition to ldexp, lets introduce a vector magnitude function
mag, where we want to disallow scalar arrays to broadcast into it.:

14 Chapter 3. Pattern Matching DataShapes

datashape Documentation, Release 0.5.4+8.gcae16a8

ldexp signatures
(A... * exact[float32], A... * int32) -> A... * float32
(A... * exact[float64], A... * int64) -> A... * float64

mag signatures
(A... * exact[2] * float32) -> A... * float32
(A... * exact[3] * float32) -> A... * float32

ufunc but disallowing broadcasting
(exact[A...] * int32, exact[A...] * int32) -> A... * int32

A possible syntactic sugar (which I’m not attached to, I think this needs some exploration) for this is:

ldexp signatures
(A... * float32=, A... * int32) -> A... * float32
(A... * float64=, A... * int64) -> A... * float64

mag signatures
(A... * 2= * float32) -> A... * float32
(A... * 3= * float32) -> A... * float32

ufunc but disallowing broadcasting
(A=.. * int32, A=.. * int32) -> A... * int32

3.4 Factoring a Set of Signatures

One of the main things the multiple dispatch in DataShape has to do is match input arrays against a set of signatures
very efficiently. We need to be able to hide the abstraction we’re creating, and provide performance competitive with,
but ideally superior to, what NumPy provides in its ufunc system.

Factoring the set of signatures into two or more stages which are simpler to solve and can prune the possibilities
more quickly is one way to do this abstraction hiding. Let’s use the add function for our example, with the following
subset of signatures. We’ve included the datetime signatures to dispel any notion that the signatures will always match
precisely.:

add signatures
(A... * int32, A... * int32) -> A... * int32
(A... * int64, A... * int64) -> A... * int64
(A... * float32, A... * float32) -> A... * float32
(A... * float64, A... * float64) -> A... * float64
(A... * timedelta, A... * timedelta) -> A... * timedelta
(A... * datetime, A... * timedelta) -> A... * datetime
(A... * timedelta, A... * datetime) -> A... * datetime

Because the broadcasting of all these cases is identical, we can transform this set of signatures into two stages as
follows:

broadcasting stage
(A... * X, A... * Y) -> A... * Z

data type stage matched against (X, Y)
(int32, int32) -> int32
(int64, int64) -> int64
(float32, float32) -> float32

(continues on next page)

3.4. Factoring a Set of Signatures 15

datashape Documentation, Release 0.5.4+8.gcae16a8

(continued from previous page)

(float64, float64) -> float64
(timedelta, timedelta) -> timedelta
(datetime, timedelta) -> datetime
(timedelta, datetime) -> datetime

Let’s work through this example to illustrate how it works.:

Stage 1: Input arrays "3 * 1 * int32", "4 * float32"
(A... * X, A... * Y) -> A... * Z
int32 ==> X # "int32" in X
3 * 1 * ==> A... # "3 * 1 *" in A...
float32 ==> Y # "float32" in Y
4 * ==> A... # "4 *" in A...

Solution: A... is "3 * 4 *", X is "int32", and Y is "float32"
Stage 2: Input arrays "int32" and "float32"
(int32, int32) -> int32
int32 ==> int32 # LEGAL
float32 ==> int32 # ILLEGAL
(float32, float32) -> float32
int32 ==> float32 # LEGAL
float32 ==> float32 # LEGAL
etc.

Assume we picked (float32, float32) -> float32
so the variables are:
X is "float32"
Y is "float32"
Z is "float32"
giving the solution substituted into stage 1:
(3 * 1 * float32, 4 * float32) -> 3 * 4 * float32

16 Chapter 3. Pattern Matching DataShapes

CHAPTER 4

DataShape Grammar

The datashape language is a DSL which describes the structure of data, abstracted from a particular implementation
in a language or file format. Compared to the Python library NumPy, it combines shape and dtype together, and
introduces a syntax for describing structured data.

Some of the basic features include:

• Dimensions are separated by asterisks.

• Lists of types are separated by commas.

• Types and Typevars are distinguished by the capitalization of the leading character. Lowercase for types, and
uppercase for typevars.

• Type constructors operate using square brackets.

• Type constructors accept positional and keyword arguments, and their arguments may be:

– datashape, string, integer, list of datashape, list of string, list of integer

• In multi-line datashape strings or files, comments start from # characters to the end of the line.

4.1 Some Simple Examples

Here are some simple examples to motivate the idea:

Scalar types
bool
int32
float64

Scalar types with missing data/NA support
?bool
?float32
?complex

(continues on next page)

17

datashape Documentation, Release 0.5.4+8.gcae16a8

(continued from previous page)

Arrays
3 * 4 * int32
3 * 4 * int32
10 * var * float64
3 * complex[float64]

Array of Structures
100 * {

name: string,
birthday: date,
address: {

street: string,
city: string,
postalcode: string,
country: string

}
}

Structure of Arrays
{

x: 100 * 100 * float32,
y: 100 * 100 * float32,
u: 100 * 100 * float32,
v: 100 * 100 * float32,

}

Structure with strings for field names
{

'field 0': 100 * float32,
'field 1': float32,
'field 2': float32,

}

Array of Tuples
20 * (int32, float64)

Function prototype
(3 * int32, float64) -> 3 * float64

Function prototype with broadcasting dimensions
(A... * int32, A... * int32) -> A... * int32

4.2 Syntactic Sugar

Many syntax elements in datashape are syntax sugar for particular type constructors. For dtypes, this is:

{x : int32, y : int16} => struct[['x', 'y'], [int32, int16]]
(int64, float32) => tuple[[int64, float32]]
(int64, float32) -> bool => funcproto[[int64, float32], bool]
DTypeVar => typevar['DTypeVar']
?int32 => option[int32]
2 * ?3 * int32 => 2 * option[3 * int32]

For dims, this is:

18 Chapter 4. DataShape Grammar

datashape Documentation, Release 0.5.4+8.gcae16a8

3 * int32 => fixed[3] * int32
DimVar * int32 => typevar['DimVar'] * int32
... * int32 => ellipsis * int32
DimVar... * int32 => ellipsis['DimVar'] * int32

4.3 The DataShape Grammar

Dimension Type Symbol Table:

Variable-sized dimension
var

Dimension Type Constructor Symbol Table:

Arrays which are either missing or fully there
option[3 * int32]
option

Data Type Symbol Table:

Numeric
bool
Two's complement binary integers
int8
int16
int32
int64
int128
Unsigned binary integers
uint8
uint16
uint32
uint64
uint128
IEEE 754-2008 binary### floating point binary numbers
float16
float32
float64
float128
IEEE 754-2008 decimal### floating point decimal numbers
decimal32
decimal64
decimal128
Arbitrary precision integer
bignum
Alias for int32
int
Alias for float64
real
Alias for complex[float64]
complex
Alias for int32 or int64 depending on platform
intptr
Alias for uint32 or uint64 depending on platform
uintptr

(continues on next page)

4.3. The DataShape Grammar 19

datashape Documentation, Release 0.5.4+8.gcae16a8

(continued from previous page)

A unicode string
string
A single unicode code point
char
A blob of bytes
bytes
A date
date
A string containing JSON
json
No data
void

Data Type Constructor Symbol Table:

complex[float32], complex[type=float64]
complex
string['ascii'], string[enc='cp949']
string
bytes[size=4,align=2]
bytes
datetime[unit='minutes',tz='CST']
datetime
categorical[type=string, values=['low', 'medium', 'high']]
categorical
option[float64]
option
pointer[target=2 * 3 * int32]
pointer

Tokens:

NAME_LOWER : [a-z][a-zA-Z0-9_]*
NAME_UPPER : [A-Z][a-zA-Z0-9_]*
NAME_OTHER : _[a-zA-Z0-9_]*
ASTERISK : *
COMMA : ,
EQUAL : =
COLON : :
LBRACKET : \[
RBRACKET : \]
LBRACE : \{
RBRACE : \}
LPAREN : \(
RPAREN : \)
ELLIPSIS : \.\.\.
RARROW : ->
QUESTIONMARK : ?
INTEGER : 0(?![0-9])|[1-9][0-9]*
STRING : (?:"(?:[^"\n\r\\]|(?:\\u[0-9a-fA-F]{4})|(?:\\["bfnrt]))*")|(?:\'(?:[^\
→˓'\n\r\\]|(?:\\u[0-9a-fA-F]{4})|(?:\\['bfnrt]))*"))*\')

Grammar:

Datashape may start with a '?' or not to signal optionality
datashape : datashape_nooption

(continues on next page)

20 Chapter 4. DataShape Grammar

datashape Documentation, Release 0.5.4+8.gcae16a8

(continued from previous page)

| QUESTIONMARK datashape_nooption

Asterisk-separated list of dimensions, followed by data type
datashape_nooption : dim ASTERISK datashape

| dtype

Dimension Type (from the dimension type symbol table)
dim : typevar

| ellipsis_typevar
| type
| type_constr
| INTEGER
| ELLIPSIS

Data Type (from the data type symbol table)
dtype : typevar

| type
| type_constr
| struct_type
| funcproto_or_tuple_type

A type variable
typevar : NAME_UPPER

A type variable with ellipsis
ellipsis_typevar : NAME_UPPER ELLIPSIS

A bare type (from the data type symbol table)
type : NAME_LOWER

Type Constructor (from the data type constructor symbol table)
type_constr : NAME_LOWER LBRACKET type_arg_list RBRACKET

Type Constructor: list of arguments
type_arg_list : type_arg COMMA type_arg_list

| type_kwarg_list
| type_arg

Type Constructor: list of arguments
type_kwarg_list : type_kwarg COMMA type_kwarg_list

| type_kwarg

Type Constructor : single argument
type_arg : datashape

| INTEGER
| STRING
| list_type_arg

Type Constructor : single keyword argument
type_kwarg : NAME_LOWER EQUAL type_arg

Type Constructor : single list argument
list_type_arg : LBRACKET RBRACKET

| LBRACKET datashape_list RBRACKET
| LBRACKET integer_list RBRACKET
| LBRACKET string_list RBRACKET

(continues on next page)

4.3. The DataShape Grammar 21

datashape Documentation, Release 0.5.4+8.gcae16a8

(continued from previous page)

datashape_list : datashape COMMA datashape_list
| datashape

integer_list : INTEGER COMMA integer_list
| INTEGER

string_list : STRING COMMA string_list
| STRING

Struct/Record type (allowing for a trailing comma)
struct_type : LBRACE struct_field_list RBRACE

| LBRACE struct_field_list COMMA RBRACE

struct_field_list : struct_field COMMA struct_field_list
| struct_field

struct_field : struct_field_name COLON datashape

struct_field_name : NAME_LOWER
| NAME_UPPER
| NAME_OTHER
| STRING

Function prototype is a tuple with an arrow to the output type
funcproto_or_tuple_type : tuple_type RARROW datashape

| tuple_type

Tuple type (allowing for a trailing comma)
tuple_type : LPAREN tuple_item_list RPAREN

| LPAREN tuple_item_list COMMA RPAREN

tuple_item_list : datashape COMMA tuple_item_list
| datashape

22 Chapter 4. DataShape Grammar

CHAPTER 5

Release Notes

5.1 Release 0.5.4+8.gcae16a8

Release 0.5.4+8.gcae16a8

Date TBD

5.2 New Features

None

5.3 New Types

• datashape now supports a categorical type (#150).

5.4 Experimental Types

Warning: Experimental types are subject to change.

• Records can now be constructed with the new syntax: R['field0':type0, 'field1':type1, ...]
where each slice object represents a field in the record. R acts as an alias for Record to make it more pleasant
to construct these literal types (#186).

23

https://github.com/blaze/datashape/issues/150
https://github.com/blaze/datashape/issues/186

datashape Documentation, Release 0.5.4+8.gcae16a8

5.5 API Changes

• datashape no longer supports Python 2.6 (#189).

• datashape no longer support Python 3.3 (#191).

• The default repr of Mono subclass now prints out the slot names as keyword arguments next to their values
(#188). For example

Instead of

>>> from datashape import Decimal
>>> Decimal(precision=11, scale=2)
Decimal(11, 2)

we have

>>> Decimal(precision=11, scale=2)
Decimal(precision=11, scale=2)

• Fields are now always constructed with str in Record datashapes (#197).

5.6 Bug Fixes

• Makes the parser recognize null and void (#183).

• Cache the datashape hash value to avoid potentially expensive recomputation during memoization (#184).

• Fix discovery of strings that start with things that look like numbers (#190).

• Makes the parser recognize object (#193).

• Make string field names in Record types have the same string type (#200).

• Fix the reprs for Function objects (#194).

5.7 Miscellaneous

None

24 Chapter 5. Release Notes

https://github.com/blaze/datashape/issues/189
https://github.com/blaze/datashape/issues/191
https://github.com/blaze/datashape/issues/188
https://github.com/blaze/datashape/issues/197
https://github.com/blaze/datashape/issues/183
https://github.com/blaze/datashape/issues/184
https://github.com/blaze/datashape/issues/190
https://github.com/blaze/datashape/issues/193
https://github.com/blaze/datashape/issues/200
https://github.com/blaze/datashape/issues/194

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

25

	Datashape Overview
	Units
	Dimensions

	DataShape Types
	Dimension Types
	DTypes

	Pattern Matching DataShapes
	NumPy ldexp UFunc Example
	Ellipsis for Broadcasting
	Disallowing Coercion
	Factoring a Set of Signatures

	DataShape Grammar
	Some Simple Examples
	Syntactic Sugar
	The DataShape Grammar

	Release Notes
	Release 0.5.4+8.gcae16a8
	New Features
	New Types
	Experimental Types
	API Changes
	Bug Fixes
	Miscellaneous

	Indices and tables

